fiberdesk – graphical user interface

Modern GUI with access to parameter setup and field solution:

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega\tau} d\omega + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial \tau^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial \tau}\right) \left(A(\tau) \int_{-\infty}^{\infty} R(\tau) |A(\tau - \tau)|^2 d\tau\right)$$

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega T} d\omega + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau) |A(T-\tau)|^2 d\tau\right)$$

$$\frac{Propagation parameter}{\left[\frac{\partial A}{\partial z} = \dots + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A \right]}{\left[\frac{\partial A}{\partial z} = \dots + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A \right]}$$

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega)e^{-i\omega\tau}d\omega + \sum_{n\geq 1}\beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n}A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau)|A(T-\tau)|^2 d\tau\right)$$

Parameter access in detail:

bee

1980

MFD

Eest

simulation

parameter

steps

stensize

distance

J INS

adaptive local error

witefle

✓ depension

1 1/m

100 µm

23.561

gamma 0.0024150! 1/(Wm)

× temporal gain saturation

meaaura 100

2e-007

piesets -

0 dB/m

× Ranan

1000

10 m 10000 m

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega T} d\omega + \sum_{n \ge 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau) |A(T-\tau)|^2 d\tau\right)$$
Propagation parameter *
Self phase modulation term

$$\frac{\partial A}{\partial z} = \dots + i\gamma \cdot (1 - f_R) A(T) |A(T)|^2$$

$$\gamma = \frac{\omega_0}{c} \frac{n_2}{A_r}$$
 and $A_{eff} = \frac{\pi}{4} MFD^2$

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega\tau} d\omega + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau) |A(T-\tau)|^2 d\tau\right)$$

Parameter access in detail:

waveguide

loss

cain.

MED

Lateria East

simulation

V 307 parameter

stens stensize

distance

J IVE

witefle

✓ dapension

× temporal gain saturation

0028.00

100

2e-007 adaptive local error

biesets: random temporal clipping

1 1/m

0 d8/m

* Ranan

1000

100 µm

23.561

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega\tau} d\omega + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau) |A(T-\tau)|^2 d\tau\right)$$

Propagation setup: distance, stepsize, numercial accuracy etc.

$$\frac{\partial A}{\partial z} = -\frac{\alpha}{2}A + \int_{-\infty}^{\infty} \frac{g(\omega)}{2} \widetilde{A}(\omega) e^{-i\omega\tau} d\omega + \sum_{n\geq 1} \beta_n \frac{i^{n+1}}{n!} \frac{\partial^n}{\partial T^n} A + i\gamma \cdot \left(1 + i\tau_{shock} \frac{\partial}{\partial T}\right) \left(A(T) \int_{-\infty}^{\infty} R(\tau) |A(T-\tau)|^2 d\tau\right)$$

file contains the initial field plus 100 fields from the calculated propagation for later analysis

file extension: *.BPF

Three simple steps:

- (1) create a pulse
- (2) choose parameters
- (3) press start

Three simple steps:

- (1) create a pulse
- (2) choose parameters
- (3) press start

supercontinuum generation, numerical error control and measurements

- (1) create a pulse
- (2) choose parameters
- (3) press start
- (4) put result to memory
- (5) repeat with higher accuracy
- (6) check measurements
- (7) noise and coherence

100 fs pulse, temporal windows +/-1.5 ps, 1k datapoints, temporal shift: -1 ps, energy 1 nJ, central wavelength 1060 nm

© Copyright by Thomas Schreiber

fiber is: NKT-ZD-975 with 2.9 µm MFD, all nonlinear effects considered, Raman response function is simple Lorentz, dispersion preselected.

ispersion	n Setup			×
n-th Ord	ler Dispersion —	(in case of dual p	oulse propagation	
prede	fined fibers:	more Bei	atlength 0 m	
	Taylor Se	more fused silica @1060nm NKT (core 1.7 μm zD=770,1250) @ 1030nm	natch* 0 ps/r	n
Beta1	0	NKT (core 1.7 μm zD=750,1600) @ 1030nm air silica approx@780nm	nly possible without forced tarded time frame	
Beta2	-0.01185	air silica approx@1060nm (1.7µm=MFD 1.2µm) ZD@665nm air silica approx@1060nm (3.5µm=MED 2.9µm) ZD@975nm		
Beta3	7.995e-5	air silica approx@1060nm (5.0µm=MFD 4.0µm) ZD@1060nm NKT LMA 5 (5.0µm=MFD 3.95µm, zD=1035nm) @ 1030nm	me frame (beta0=beta1=0)	
Beta4	-1.00392e-00	NKT LMA 5 (5.0µm=MFD 4.2µm, zD=1070nm) @ 1030nm air silica approx@800nm (1.7µm=MFD 1.2µm) 7D@665nm		
Beta5	1.21005e-010	air silica approx@800nm (2µm=MFD 2µm) ZD@770nm Zhu et. al. @800nm (2µm=MFD 2µm) ZD@743nm		
Beta6	4.0347e-014	Damian @750nm,1600nm (MFD 1.6µm) ZD@830nm		
Beta7	0	Cristiani et.al. Opt.Exp. 12, 124 (2004)(MFD=3.47µm)2D@710nn Dudley et.al. Rev. Mod. Phys., Vol. 78, No. 4, (2006) Fig. 3	n	
Beta8	0	Layertech GTI 1000-1080nm - 250fs @1030nm Hollow core 1060-02@1030nm	s/nm/km],b2[ps²/m])	
Beta9	0	zero dispersion @ all copy	beta2 + group delay	
- Trust re	aion	[nm].t	o2 [ps²/m], GD[ps/m]	
froi	m 0	nm to 20000 nm		
O	< C	ancel grating compressor >>	Save Load	

Propagation parameter × standard propagatio 👻 Setup > waveguide 0 loss 1/m dB/m 01 gain 3| MFD μm 0.0268343{ 1/(W m) gamma 2.1205 JJ Esat simulation Raman dispersion ✓ self-steepening ✓ spm parameter × temporal gain saturation 100 steps stepsize 0.002 m distance 0.2 m measure ✓ live ✓ write file 100 0.0001 adaptive local error presets: ÷ random temporal clipping

propagate 0.2 m, 100 steps, different accuracy results saved via "memory">"set"

position: 0.200 m energy: 926.328 pJ average power: 69.475 mW roundtrip: 0

adaptive algorithm is bounded by local error

as we measured everything, it can be analysed in the measurement graph

Copy ASCII	Copy BMP	Save BMP	Zoom Out				
position				🗌 log x			
adaptive.local	_error_min		<u>.</u>	🗌 log y			
8E-0	07 -						1
.E 7E-0	07 -						1
L 6E-0	07 -					٨	
5E-0	07 -						
4E-O	07 -					Л	1
JYCE.	07 -	1					
dapt 2E-0	07 -						6
1E-0	07		~ ~		AN		
0	0 0.	02 0.04	0.06 0	.08 0.1	0.12 0.	14 0.1	6 0.18
				position	(m)		

Example: supercontinuum generation with local error <1e-6

Measurements allow for more detailed analysis:

Example: supercontinuum generation energy drop due to intrapulse Raman shift of the soliton, once it is "created"

fiberdesk $\frac{d_{1}}{d_{2}} = \frac{d_{1}}{d_{1}} + \sum_{k} h_{k} \sum_{k} \frac{d_{1}}{d_{2}} \frac{d_{1}}{d_{2}} + \int_{0} \left(\frac{d_{1}}{d_{2}} + \int_{0}^{d} \int_{0}^{d} \left(\frac{d_{1}}{d_{2}} + \int_{0}^{d} \int_{0}^$

Pu

noise and coherence: same starting pulse as before but with quantum noise added, use "propagation">"parameter variation" dialog with iterating pulse creation

ise Profile and Data Array ×	Parameter, Variation	x
Half 1.5 ps ps FWHM 0.1 ps ps TempShift -1 ps ps phase 0 rad rad Size 1k (2^10) Type Gauss v	507.8 507.4 507.2 507.2 507.2 507.2 507.2 507.2 507.2 507.2 507.4	Copy BMP Copy ASCI Save BMP Zoom Out Surface Surface Surface Surface Surface
wavelength1060 \updownarrow nm +/-nm2nd order0 \updownarrow fs^2 +/- fs^2 spectral phase0 \checkmark fs^2 +/- fs^2 3rd order0 \bigstar fs^2 +/- fs^2 energy1e-009 \bigstar J+/-J	506.6 506.4 506.2 1 15 2 25 3 35 4 45 5 5.5 6 6.5 7 7.5 8 iteration number	logx logy ⊡ Legend
repetition rate 75000000 + Hz PBC	2D Image: second parameter with a second paramet	log steps
Image: Construction of the system Image: Construction of the system double pulsing Image: Construction of the system separation 0 ps relative 0 create field in data array 1 Image: Create field in data array 2 Image: Create field in data array 2 Image: Create field in data array 2 OK Apply Cancel reset	Save to file C: Users (admin (Desktop)(butorial(supercontinuum (noise, pv f Result - M21*1e9 update or use (M21 - spec.width_ms. c) atart c)	lect base file

the saved file is now used for average spectrum and coherence calcualation via Postprocessing > coherence

Postprocessing > average intensity

past both results to clipboard and display in e.g. MS Excel

$$\left|g_{12}(\lambda)\right| = \frac{\left\langle E_{1}^{*}(\lambda)E_{2}(\lambda)\right\rangle}{\sqrt{\left\langle \left|E_{1}(\lambda)\right|^{2}\right\rangle \left\langle \left|E_{2}(\lambda)\right|^{2}\right\rangle}}\right|$$

fiberdesk

NLSE with gain – simple amplifiers and pulse compression

 $g(1/m) = -\ln(Pout/Pin)/L = 4.343 * g(dB/m)$

100 fs pulse, +/-10ps window, 1k, 1nJ only dispersion and spm, MFD=10 μ m, L=1 m, gain=20dB/m, profile: 1030 nm, 40 nm width, gaussian

fiberdesk - [lecture 3 i				
VIEW WINDOWS		_		
ihow phase Show cross sections eal part maginary part	✓ show text panel Options	 ✓ view gain spectrum ☐ show autocorrelation ☐ add spectrogram 	16 Segoe UI	Ŧ
Spectral domain	Text Panel	Misc	Graphs	

results - with "view">"persistance" set to 16 and 16 steps.

fiberdesk $\frac{-i(-x)}{2} + \frac{1}{2} \lambda + \sum_{k} \frac{\lambda^{(-k)}}{2} \frac{\lambda}{2} + \sum_{k} \frac{\lambda^{(-k)}}{2} \frac{\lambda}{2} + \sum_{k} \frac{\lambda^{(-k)}}{2} \frac{\lambda^{(-k)}}{2} + \sum_{k} \frac$

pulse compression

pulse compression

automatic compression minimizes autocorrelation width

initial Para	meter	×	Grating					×
	Initial Stepsize 0.05	m	groove frequency	1250	lines/mm			
waveleng	th 1060	ps²/m	grating period	800	nm		~	
Beta2	0.2	ps²/m	wavelength	1060	nm	/	Sal >	
Beta3	0	ps³/m	diffraction order	1			α _c	grating
Beta4	0		angle of incidence	41,4908	• littrow	grating	A	
Grating	g Prism pair:		angle of diffraction	41.4908	•	mirr	or	20
Compres			Single pass (grating p	air) dispersio	n:			
ОК	Cancel		beta2	-7,8409	ps²/m			
			beta3	0.03394	ps³/m			
			beta4 -	0.0002375	ps^4/m	OK	Cancel	

fiberdesk

pulse compression

automatic compression minimizes autocorrelation width

pulse compression

Or via parameter variation (e.g. length by setting up a dispersive element)

Multi-Element Propagation

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

• fiber laser cavity:

ring cavity Fast saturable absorber modelled by reflectivity R

$$R = R_{unsat} + R_{sat} \cdot \left(1 - \frac{1}{1 + P / P_{sat}}\right)$$

• modelling of each part by the NLSE

$$iA_{z} + \frac{g}{2}A + i\beta_{2}A_{tt} = i\gamma |A|^{2}A$$

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Set up the gain fiber as a standard propagation with saturable gain

save as fiber.ppf

jain profile		add second peak	
Center 1060	nm	Center 1060 nm	
Width ~ 40	nm	Width ~ 40 nm	
shape Gauss	-	shape const -	
ratio of second to	first peak (se only	t to zero for one peak): 0	
ratio of second to	first peak (se only	t to zero for one peak): 0	
ratio of second to ☑ gain saturation	first peak (se only 1e-11	to zero for one peak): 0 J $g = g_0 / (1 + E / E_s)$	at.gain)
ratio of second to y gain saturation ser defined gain file	first peak (se only 1e-11	to zero for one peak): 0 J $g = g_0 / (1 + E / E_{st})$	_{at.gain})
ratio of second to ✓ gain saturation ser defined gain file □ use ASCII file for (first peak (se only 1e-11 gain profile gi	to zero for one peak): 0 J $g = g_0 / (1 + E / E_s)$ yen in g(1/m) vs. wavelength (separator	at.gain)
ratio of second to gain saturation ser defined gain file use ASCII file for	first peak (see only 1e-11 gain profile gi	to zero for one peak): 0 J $g = g_0 / (1 + E / E_s)$ ven in g(1/m) vs. wavelength (separator	at.gain) TAB) file

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

fiberdesk

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

save as SA.ppf

Multi-Element Propagation:

Example: Short Pulse Fiber Lasers

Outcoupling:

50% means complex multiplication with sqrt(0.5)

Propagation parameter

standard propagation	Ŧ
standard propagation	
saturable absorber	
pulse injection	
custom filter	
rate equation gain	
pulse manipulation	
polarization manipulation	
nonlinear loop mirror	
z-dependence	

	output coupler	
saturable		
	×	ulse
Creale Pulse Center Pulse Creale double pulse delay of pulses (will be V take phase shift into acco Complex Multiplication Temp t - time in sec helper variable h =	0.0 ps ount (Mach-Zehnder equivale poral Domain	
i g Complex Multiplication Spect wt-wavelength in m, f-freque helper variable h =	stral Domain Jency in Hz 0	
OK Cancel		

save as OC.ppf

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Manipulation ×	¢					
Center Pulse						
Create double pulse						
delay of pulses (will be centered) 0.0 ps take phase shift into account (Mach-Zehnder equivalent)						
Complex Multiplication Temporal Domain						
i 1						
Complex Multiplication Spectral Domain						
1						
i 1						
OK Cancel						

- Center pulse in the time domain, helps to converge the pulse, as change is measured in the time domain

- Can be combined with OC.ppf

Propagation parameter >	×
pulse manipulation 👻 Setup >	
waveguide	
loss 0.7 + /	

save as center.ppf

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

- assign all files to elements in the order of the cavity
- Select the last one to be updated after each loop to see convergence live
- Icons change according to selected status

ostprocessing Multi-		Multi-Element Propagation		ation	View	Windo	IWS		
	fiber dc	• •	sam	K Element	X t Elemen	X t Element	X Element E	K Iement E 97	
×	Watch user define data	d measur	P A L S	rropagate ssign pro oad << s ave << si	e << sam opagatio am >> am >>	>> n file to el	ement	fiber	
	/ pulse1 M0 - index		U	isë in fori Ipdate afi	ward loo ter forwa	p rd propag	gation	i -	
M1 - position M2 - distance M3 - datapoin M4 - pulse.en		ion nce	5	save field after forward propaga			agation	n	
		ooints e.energy	1	ise in bac ipdate aff	kward lo ter backv	op vard prop	agation		
	M5 - pulse M6 - pulse	e.avg_pov e.rep_rate	3	ave field	after bac	kward pro	pagation		
	M7 - pulse	shift		-17	295 as				

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

- (1) create initial pulse, e.g. quantum noise
- (2) start loop (switch on "write slice … " for later postprocessing)

Loop propagation	×
✓ switch off individual "live" settings □ update view after each loop	
✓ write slice to bpf file 100	frames
maximum number of loops 1000	
Automatic stop of loop	
✓ stop if converged	
- condition	-
minimum change of 1e-006	
for at least 10 loops	
OK Cancel	

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Postprocessing > Python

Spyder (P)	thon 2.7	and the second division of the second divisio	The Party Name of Street, or other
Eile Edit	Search Source flue	Bebug Interpreten 3	jeak Yiww I
	P & &	# #	28 A
0 ()	X = 8 -		
tilitor - CiWee	s'admini@eskiopiljuttoralViba	e desk-show, py	
301	untifed5.ov 🗂	d untried7.pv 🖺 🛛 🥂	untitied8.py
238 dist 231 232 dete. 233 dete. 235 det	 3820 spec/* data_spec.me - mp.reshape(mp.log10 time/- data_time.me - mp.reshape(mp.log10 - pit.figure() figl.add_subplot(12 figl.add_subplot(12 figl.add_subplot(12 mpr.fs the logentime f on adv adv - adv - adv adv - ad	<pre>(() (data_spec),(frames, () (data_time),(frames, () (data_time),(frames,) (r df romps (r df romps)) (r df romps (r df romps (r df romps)) (r df romps (r df romps)) (r df romps (r df romps)) (r df romps) (r df rom</pre>	,deta_spec.shape ,data_time.shape [0]/frames) in`] [0]/frames) }

Multi-Element Propagation:

Example: Short Pulse Fiber Lasers

Multi-element > Parameter variation we change the gain saturation to increase the energy (remark: intracavity energy!)

2D use final field as	= x J , with	e field) to x 1e-011 1e-009	datapoints log steps
in Element 0 - fibe	x-axis value =	1e9*M2	
✓ save to file C:\Use	rs\admin\Desktop\tutorial\oscillator simulation	ns\energy scaling.pvf	select base file
	Result = 1e9*M20 u	pdate or use M20 - spec	c.width.m 🔹
start multiple elements	auto axis x intra-cavity energy (nJ)		
setup >>	auto axis y spectral width (nm)		

Multi-Element Propagation:

Example: Short Pulse Fiber Lasers

Multi-element > Parameter variation we change the gain saturation to increase the energy (remark: intracavity energy!)

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

Intracavity evolution

- (1) select stable solution from saved file
- (2) specify slices to be saved
- (3) post-process

Dialog					×
forward	backward	filename	distance		slices
\checkmark		ons\fiber-simple.ppf	0	m	100
~		·simulations\DC.ppf	0	m	10
\checkmark		simulations\SAM.ppf	0	m	1
~		simulations\OC.ppf	0	m	1
~		iulations\center.ppf	0	m	1
~			0	m	0
\checkmark			0	m	0
~			0	m	0
~			0	m	0
~			0	m	0
		su	um of slices:		113
		Cancel	Sav	e to B	PF file >>

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

soliton solution: $beta2@DC = -0.06 ps^2$

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

soliton solution: beta2@DC = -0.04 ps²

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

toward stretched pulse: $beta2@DC = -0.03 ps^2$

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

similariton: beta2@DC = -0.02 ps^2

Multi-Element Propagation: Example: Short Pulse Fiber Lasers

chirped pulse oscillator: $beta2@DC = +0.02 ps^{2}$

Rate-equation gain

- (1) Simple cw oscillators
- (2) Nonlinear fiber amplifiers (in preparation)

Rate-equation gain

Solution of stationary rate-equation (effectivly two level system) to describe pump- and signal powers as well as inversion in lasers and amplifiers.

 $\mathsf{fiberdesk} \quad \stackrel{\text{\tiny def}}{=} \sum_{a=1}^{n} \lambda_{a} \sum_{a=1}^{n} \lambda_{a} \sum_{a=1}^{n} \lambda_{a} \nabla \left(\lambda_{a} + \frac{a}{a} \right) \left(\lambda_{a} + \frac{a}{a} \right)$

Rate-equation gain

Solution of stationary rate-equation (effectivly two level system) to describe pump- and signal powers as well as inversion in lasers and amplifiers.

$$\frac{dP_{P/S}^{\pm}}{dz} = \pm \left(\sigma_{P/S}^{em} n_2 \mp \sigma_{P/S}^{abs} n_1 + \alpha_{P/S}\right) \cdot \Gamma_{P/S} \cdot P_{P/S}^{\pm} \mp \sigma_{P/S}^{em} n_2 \cdot 2 \cdot h \upsilon_{P/S} \cdot \Delta \upsilon$$

 $n_0 = n_1 + n_2$ is the sum of upper and lower population density $\alpha_{P/S}$ is an additional loss (background loss)

au as the upper state lifetime

assumed that the pump absorption can be described by a simple overlap factor Γ_{p} , which is the ratio of doped core area to pump core area.

Simple cw fiber laser – pumped from both sides

empty field and numerics first

Pulse Profile and Data Array

×

Rate Equation Setup				×
numerics pump signal RE	-doping mirrors			
forward pump	1		- backward pump]
pump core diameter 400.0 µm			pump core diameter	400.0 µm
background loss 0 1/m			background loss	0 1/m
small signal power wavelength absorption (W) (nm) (dB/m)		Pump Backward	power waveler (W) (nm)	small signal ngth absorption (dB/m)
100 976.0 0.9467770			100 97	0.9467770
0.0 976.0 0.9467770			0.0 97	0.9467770
0.0 976.0 0.9467770			0.0 97	0.9467770
0.0 976.0 0.9467770		Pump Core	0.0 97	76.0 0.9467770
0.0 976.0 0.9467770			0.0 97	0.9467770
ок				

Rate Equation Setup				×
numerics pump signal R	E-doping mirrors			
signal background loss 0.02 1/m	M1 Input Field	M2 Output Field	output ✓ save output M2 to data array Save output M1 to data array	
		Signal Core		
ок				

					-				
mass concentra host material dens	Emission Absor	otion Cross Se	ection	Absorption		1	1		
density 3,5	cross section (1e-27 m²)	Center (nm)	Width (nm)	cross section (1e-27 m²)	Center (nm)	Width (nm)			
-	2325	975	4	180	950	70			
omic mass ions	160	978	12	360	895	24			
Ľ	340	1025	20	510	918	22			
	175	1050	60	160	971	12		\wedge	
	150	1030	90	2325	975	4		ha	JV
	0	0	0	0	0	0		0.840 0.910	0.980 1.050 1.120 1.1
	0	0	0	0	0	0		Wa	velength (µm)
	0	0	0	0	0	0			
	0	0	0	0	0	0	Load	Save	Copy to Clipboard (ASCI

ror M1 -			0.045	11.1.22		- mirror M2		
enter	1060.0	nm	M1	M2		center	1060.0	nm
width	1.0	nm	U-			width	1.0	nm
n	eflectivity	100 %		()		refle	ectivity	4 %
reflectivi	ity outside	0.0 %				reflectivity of	outside	0.0 %
			, ∩ intermediate mirror —	Interneolate Million	(111)			
					1050.0	6 C		
			center 1060.	nm reflectivity	1000.0	10		

Simple cw fiber laser – pumped from both sides

Results:

Pulse manipulation

(1) Phase modulation

Pulse manipulation

(1) Phase modulation

Propagation parameter ×
pulse manipulation 👻 Setup >
waveguide
loss 0 1/m

	cos(5*cos(2*3.1415*10^9*6*t))
i	sin(5*cos(2*3.1415*10^9*6*t))
	Complex Multiplication Spectral Domain
	1
i	1

Nonlinear Optical Loop Mirror

Nonlinear Optical Loop Mirror

The loop shall be a single nonlinear element without dispersion.

Save this element as testNOLM.ppf

Propagation paramet... • • × Watch * Setup> standard propagation waveguide 0 1/m loss 0 dB/m gain 20 jim MED 0.000412903225806452 1/(Wm) gamma 94247 µJ Esat simulation × Raman x dispersion ✓ spm x self-steepening parameter x temporal gain saturation 100 steps 8.01 m stepsize distance 1 m measure and parse write file 100 0.0001 adaptive local error presets random temporal clipping

fiberd1 × - # × user defined measurements >> data value pulse1 di l A. 0 M0 - index 0.000 m M1 - position M2 - distance 0.000 m 1024 M3 - datapoints M4 - pulse.energy 1.600 pJ self phase modulation term $\frac{\partial A}{\partial z} = \dots + i \gamma (1 - f_R) A(T)$ $\gamma = \frac{\omega_0}{c} \frac{n_2}{A_{eff}}$ and $A_{eff} = \frac{\pi}{4} MFD^2$ 3.2e-20 m²/W n2 0.18 fR Saturate SPM 1.0 GW/cm saturation power ✓ use SPM * exclude SPM

Nonlinear Optical Loop Mirror

Choose the NOLM element and start the setup dialog

nd outpu inpu	t $rac{R}{1}$	2
outpu 2nd inpu	it 1-R 5	4
element 1	C:\Users\tsch\Downloads\Fiber-desk laser simulation\t	select >>
	1	
element2		select>>
element2 element3		select>>
element 2 element 3 element 4		select>> select>> select>>
element 2 element 3 element 4 element 5		select>> select>> select>> select>>
element 2 element 3 element 4 element 5	out port if both options are choosen, it's tried to put the output in both fields	select>> select>> select>> select>>

Select the previously saved file for the first element. The output will be the result.

Nonlinear Optical Loop Mirror

In order to see the effect of the nonlinearity in the loop, please define a new pulse as "cw" according to the settings here.

Pulse	e Profile an	nd Data Array X
	Ha	alf 8 * ps +/-
Г	Interva	
	FWH	N 10000000 ps +/-
	TempS	hi 0 🔶 ps+/- ps
phase		se 0 🔶 rac+/- 🚺 rad
	Size 1k	(2^10) • Type Gauss •
	waveleng	th 1060 _ nm+/ nm
	2nd orde	er 0 \bigstar fs ² +/r fs ²
	spectra	
	3rd orde	er 0 🔶 fs ^s +/-
	energ	J 1.6e-12 ↓ J +/-
ave	erage	0.1 🔷 W +/- W
re	petition rat	e 6.25e+10 Cw
		· · · · · · · · · · · · · · · · · · ·
	scram	ble spectral pha
	🗌 add q	uantum noise (one photon per spectral no
_ d	louble puls	sing
	· operation	0 relative 0
S	eparation	^{ps} magnitude
✓ (create field	d in data array 1 🗌 create field in data array 2
	add field to	o data array 1 📃 add field to data array 2
	ОК	Apply Cancel reset

Now the power is varied in the parameter variation dialog as well as the splitting ratio. The displayed results is the output power over the input power.